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RATIONALE:To elucidate the extent to which

the major cultural transformations of farming,

pastoralism, and shifts in the distribution of

languages in Eurasia were accompanied by

movement of people, we report genome-wide

ancient DNA data from 523 individuals span-

ning the last 8000 years, mostly from Central

Asia and northernmost South Asia.

RESULTS: The movement of people follow-

ing the advent of farming resulted in genetic

gradients across Eurasia that can be modeled

as mixtures of seven deeply divergent popula-

tions. A key gradient formed in southwestern

Asia beginning in the Neolithic and continu-

ing into the Bronze Age, withmore Anatolian

farmer–related ancestry in the west andmore

Iranian farmer–related ancestry in the east.

This cline extended to the desert oases of

Central Asia and was the primary source of

ancestry in peoples of the Bronze Age Bactria

Margiana Archaeological Complex (BMAC).

This supports the idea that the archaeolog-

ically documented dispersal of domesticates

was accompanied by the spread of people from

multiple centers of domestication.

Themain population of theBMACcarriedno

ancestry from Steppe pastoralists and did not

contribute substantially to later South Asians.

However, Steppe pastoralist ancestry appeared

in outlier individuals at BMAC sites by the turn

of the secondmillenniumBCEaround the same

time as it appeared on the southern Steppe.

Using data from ancient individuals from the

Swat Valley of northernmost South Asia, we show

that Steppe ancestry then integrated further south

in the first half of the second millennium BCE,

contributingup to30%of the ancestry ofmodern

groups in South Asia. The Steppe ancestry in

South Asia has the same profile as that in Bronze

Age Eastern Europe, tracking a movement of

people that affected both regions and that likely

spread the unique features shared between Indo-

Iranian and Balto-Slavic languages.

The primary ancestral population of modern

South Asians is a mixture of people related to

early Holocene populations of Iran and South

Asia that we detect in outlier individuals from

two sites in cultural contact with the Indus

Valley Civilization (IVC), making it plausible

that it was characteristic of the IVC. After the

IVC’s decline, this populationmixedwith north-

westerngroupswithSteppe

ancestry to form the “An-

cestralNorthIndians” (ANI)

and also mixed with south-

eastern groups to form the

“Ancestral South Indians”

(ASI),whosedirectdescend-

ants today live in tribal groups in southern

India. Mixtures of these two post-IVC groups—

the ANI and ASI—drive the main gradient of

genetic variation in South Asia today.

CONCLUSION: Earlier work recorded mas-

sive population movement from the Eurasian

Steppe into Europe early in the third millen-

nium BCE, likely spreading Indo-European

languages.We reveal a parallel series of events

leading to the spread of Steppe ancestry to

South Asia, thereby documentingmovements

of people that were likely conduits for the

spread of Indo-European languages.▪

RESEARCH

Narasimhan et al., Science 365, 999 (2019) 6 September 2019 1 of 1

The list of authors and affiliations is available in the full

article online.

Corresponding authors: Vagheesh M. Narasimhan (vagheesh@
mail.harvard.edu); Nick Patterson (nickp@broadinstitute.org);
Michael Frachetti (frachetti@wustl.edu); Ron Pinhasi (ron.
pinhasi@univie.ac.at); David Reich (reich@genetics.med.
harvard.edu)
Cite this article as V. M. Narasimhan et al., Science 365,
eaat7487 (2019). DOI: 10.1126/science.aat7487

A r a b i a n

S e a

ATLANTIC

OCEAN

ATLANTIC

OCEAN

ATLANTIC

OCEAN

Black  Sea

Caspian  Sea

Caspian  Sea

Caspian  Sea

M ed iterranean  Sea

M ed iterranean  Sea

M ed iterranean  Sea

Ancestral
North Indians
2000–1000 BCE 

Ancestral
North Indians
2000–1000 BCE 

Ancestral
North Indians
2000–1000 BCE 

~1000 BCE ~1000 BCE ~1000 BCE 
~2000 BCE 

~3000 BCE ~3000 BCE ~3000 BCE 

~1700 BCE ~1700 BCE ~1700 BCE 

~1700 BCE ~1700 BCE ~1700 BCE 

~1700 BCE ~1700 BCE ~1700 BCE 

Yamnaya
~3300 BCE 

Yamnaya
~3300 BCE 

Yamnaya
~3300 BCE 

~2700 BCE 

~2500 BCE 

~2400 BCE 

~2300 BCE 
Ancestral

South Indians
2000–1000 BCE 

M

O
DERN 

EU
RO

PEAN  C
L IN

E

M
O

D
ER

N
 IN

D
IA

N

 C
LIN

E

A S I A

E U R O P E

A F R I C A

The Impact of Yamnaya Steppe Pastoralists

Path by which 
this ancestry arrived 

in South Asia is 
uncertain.

Location of the 
initial formation of 
Yamnaya ancestry 

is uncertain.
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Location of the 
initial formation of 
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is uncertain.
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Flow of Yamnaya-derived ancestry
All arrows are approximate.

Eurasian Steppe

The Bronze Age spread of Yamnaya Steppe pastoralist ancestry into two subcontinents—Europe and South Asia. Pie charts reflect the

proportion of Yamnaya ancestry, and dates reflect the earliest available ancient DNA with Yamnaya ancestry in each region. Ancient DNA has not

yet been found for the ANI and ASI, so for these the range is inferred statistically.
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By sequencing 523 ancient humans, we show that the primary source of ancestry in

modern South Asians is a prehistoric genetic gradient between people related to early

hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s

decline, its people mixed with individuals in the southeast to form one of the two main

ancestral populations of South Asia, whose direct descendants live in southern India.

Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around

4000 years ago, spread via Central Asia to form the other main ancestral population.

The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern

Europe, tracking a movement of people that affected both regions and that likely spread

the distinctive features shared between Indo-Iranian and Balto-Slavic languages.

T
he past 10,000 years have witnessed pro-

found economic changes driven by the

transition from foraging to food produc-

tion, as well as major changes in cultural

practice that are evident fromarchaeology,

the distribution of languages, and the written

record. The extent to which these changes were

associated with movements of people has been

a mystery in Central Asia and South Asia, in part

because of a paucity of ancient DNA. We report

genome-wide data from 523 individuals from

Central Asia and northernmost South Asia from

the Mesolithic period onward (1), which we co-

analyze with previously published ancient DNA

from across Eurasia and with data from diverse

present-day people.

In Central Asia, we studied the extent to which

the spread of farming and herding practices from

the Iranian plateau to the desert oases south of

the Eurasian Steppe was accompanied bymove-

ments of people or adoption of ideas from neigh-

boring groups (2–4). For the urban communities

of the Bactria Margiana Archaeological Complex

(BMAC) in the Bronze Age, we assessed whether

the people buried in its cemeteries descended

directly from earlier smaller-scale food producers,

and we also documented their genetic hetero-

geneity (5). Farther to the north and east, we

showed that the Early Bronze Age spread of crops

and domesticated animals between Southwest

Asia and eastern Eurasia along the Inner Asian

Mountain Corridor (6) was accompanied by

movements of people. Finally, we examined

when descendants of the Yamnaya, who spread

across the Eurasian Steppe beginning around

3300 BCE (7–9), began to appear in Central Asia

south of the Steppe.

In northernmost South Asia, we report a time

transect of >100 individuals beginning~1200BCE,

whichwe coanalyze alongwithmodern data from

hundreds of present-day South Asian groups, as

well as ancient DNA from neighboring regions

(10). Previous analyses place the majority of

present-day SouthAsians along a genetic cline (11)

that canbemodeled as having arisen frommixture

of two highly divergent populations after around

4000 years ago: the Ancestral North Indians

(ANI), who harbor large proportions of ancestry

related toWestEurasians, and theAncestral South

Indians (ASI), who aremuch less closely related to

West Eurasians (12).We leveraged ancient DNA to

place constraints on the genetic structure of the

ANI and ASI and, in conjunction with other lines

of evidence, to make inferences about when and

where they formed. By modeling modern South

Asians along with ancient individuals from sites

in cultural contact with the Indus Valley Civili-

zation (IVC), we inferred a likely genetic signa-

ture for people of the IVC that reached its

maturity in northwestern South Asia between

2600and1900BCE.Wealso examinedwhenSteppe

pastoralist–derived ancestry (9) mixed into groups

in South Asia, and placed constraints on whether

Steppe-related ancestry or Iranian-related ances-

try is more plausibly associated with the spread

of Indo-European languages in South Asia.

Dataset and analysis strategy

We generated whole-genome ancient DNA data

from 523 previously unsampled ancient individ-

uals and increased the quality of data from 19

previously sequenced individuals. The individu-

als derive from three broad geographical regions:

182 from Iran and the southern part of Central

Asia thatwe call Turan (present-dayTurkmenistan,

Uzbekistan,Tajikistan,Afghanistan, andKyrgyzstan),

209 fromtheSteppeandnorthern forest zonemostly

inpresent-dayKazakhstanandRussia, and 132 from

northernPakistan. Theancient individuals are from

(i)Mesolithic, Copper, Bronze, and Iron Age Iran

and Turan (12,000 to 1 BCE, from 19 sites) includ-

ing the BMAC; (ii) early ceramic-using hunter-

gatherers from the western Siberian forest zone,

who we show represent a point along an early

Holocene cline of North Eurasians and who
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emerge as a valuable source population for mod-

eling the ancestry of Central and South Asians

(6400 to 3900 BCE from 2 sites); (iii) Copper and

Bronze Age pastoralists from the Central Steppe,

including from Bronze Age Kazakhstan (3400 to

800 BCE from 56 sites); and (iv) northernmost

South Asia, specifically Late Bronze Age, Iron Age,

and historical settlements in the Swat and Chitral

districts of present-day Pakistan (~1200 BCE to

1700 CE from 12 sites) (Fig. 1 and table S1) (1, 13).

We prepared samples in dedicated clean rooms,

extracted DNA (14, 15), and constructed libraries

for Illumina sequencing (16, 17). We enriched the

libraries for DNA overlapping around 1.2 million

single-nucleotide polymorphisms (SNPs), se-

quenced the products on Illumina instruments,

and performed quality control (table S2) (7, 18, 19).

Our final dataset after merging with previously

reported data (7–9, 16, 18, 20, 21–31) spans 837

ancient individuals who passed all our analysis

filters. These filters included restricting to the

92% of individuals who were represented by at

least 15,000 of the targeted SNPs (the number

at whichwe began to be able to reliably estimate

proportions of the deeply divergent ancestry

sources) (table S1). These filters also included

removing individuals determined genetically to

be first-degree relatives of other higher-coverage

individuals (table S3). The median number of

SNPs analyzed per individual was ~617,000. We

also merged with previously reported whole-

genome sequencing data from 686 present-day

individuals (table S1) and coanalyzed with 1789

present-day people from 246 ethnographically

distinct groups in South Asia genotyped at

~600,000 SNPs (table S5) (10, 13, 27, 32).

We grouped individuals on the basis of

archaeological and chronological information,

taking advantage of 269 direct radiocarbon

dates on skeletal material that we generated

specifically for this study (table S4). We further

clustered individuals who were genetically in-

distinguishable within these groupings and

labeled outliers with ancestry that was signif-

icantly different from that of others at the same

site and time period (13). For our primary analy-

ses, we did not include individuals who were the

sole representatives of their ancestry profiles,

thereby reducing the chance that our conclu-

sions were being driven by single individuals

with contaminated DNA or misattributed ar-

chaeological context. This also ensured that

each major analysis grouping was represented

bymanymore SNPs than ourminimum cutoff of

15,000 per individual. Thus, all but one analysis

cluster included at least one individual covered

by >200,000 SNPs, which is sufficient to support

high-resolution analysis of population history

(18) (the exception is a pair of genetically similar

outliers from the site of Gonur that are not the

focus of anymain analyses).We use italic font to

refer to genetic groupings and nonitalic font to

indicate archaeological cultures or sites.

Tomake inferences about population structure,

we began by carrying out principal components

analysis (PCA) projecting ancient individuals onto

the patterns of genetic variation in present-day

Eurasians, a procedure that allowed us to obtain

meaningful constraints even on ancestry of an-

cient individuals with limited coverage because

each SNP from each individual can be compared

to a large reference dataset (33–35). This revealed

three major clusters strongly correlating to the

geographic regions of the Forest Zone/Steppe,

Iran/Turan, and South Asia (Fig. 1), a patternwe

replicate in ADMIXTURE unsupervised cluster-

ing (36). To test if groups of ancient individuals

were heterogeneous in their ancestry, we used

f4-statistics to measure whether different parti-

tions of these groups into two subgroups differed

in their degree of allele sharing to a third group

(using a distantly related outgroup as a baseline).

We also used f3-statistics to test for admixture

(32). To model the ancestry of each group, we
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used qpAdm, which evaluates whether a tested

group is consistent with deriving from a pre-

specified number of source populations (relative

to a set of outgroups) and, if so, estimates pro-

portions of ancestry (7). We first used qpAdm to

attempt to model groups from the Copper Age

and afterward as a mixture of seven “distal”

sources, using as surrogates for them six pre–

Copper Age populations and one modern Anda-

manese hunter-gatherer population (Box 1). (The

model assumes that each true ancestral popula-

tion is a clade with the population we use as a

surrogate for it in the sense of descending from

the same ancestral population, possibly deeply in

time.) In this paper, we use the term “farmers” to

refer to people who cultivated crops, herded

animals, or both; this definition covers not only

large settled communities but also smaller and

probably less sedentary communities like the early

herders of the Zagros Mountains of western Iran

from the site of Ganj Dareh. The latter kept do-

mesticated animals but did not cultivate crops

and are a key reference population for this study,

as they had a distinctive ancestry profile that

spread widely after the Neolithic (9, 28, 37).

We also identified proximal models for each

group as mixtures of temporally preceding

groups. We implemented an algorithm called

DATES for estimating the age of the popula-

tion mixtures (13), which is related to previ-

ous methods that translate the average size of

ancestry blocks into time since mixture by

leveraging precise measurements of meiotic

recombination rate in humans (32, 38, 39).

DATES has the specific advantage that it is

optimized relative to previous methods in being

able to work with ancient DNA as well as with

single genomes (13). In Box 2, we summarize

the findings of these analyses (we use the same

headings in Box 2 and themain text to allow cross-

referencing), whereas our online data visualizer (1)

allows an interactive exploration of the data.

Iran and Turan

A west-to-east cline of decreasing
Anatolian farmer–related ancestry

We studied the genetic transformations accom-

panying the spread of agriculture eastward from

Iranbeginning in the 7thmillenniumBCE(3,40,41).

We replicate previous findings that 9th to 8th

millennium BCE herders from the ZagrosMoun-

tains of western Iran harbored a distinctiveWest

Eurasian–related ancestry profile (9, 31), whereas

later groups across a broad region were admixed

between this ancestry and that related to early

Anatolian farmers. Our analysis reveals a west-

to-east cline of decreasing Anatolian farmer–

related admixture in the Copper and Bronze

Ages ranging from ~70% in Anatolia to ~31% in

eastern Iran to ~7% in far eastern Turan (Fig. 1,

Narasimhan et al., Science 365, eaat7487 (2019) 6 September 2019 3 of 15

Fig. 1. Overview of ancient DNA data. (A) Distribution of sites and

associated archeological or radiocarbon dates along with the number of

individuals meeting our analysis thresholds from each site. (B) Locations of

ancient individuals for whom we generated ancient DNA that passed our

analysis thresholds along with the locations of individuals from 140 groups

from present-day South Asia that we analyzed as forming theModern Indian

Cline. Shapes distinguish the individuals from different sites. Data from

106 South Asian groups that do not fit along the Modern Indian Cline as well

as AHG are not shown. (C) PCA analysis of ancient and modern individuals

projected onto a basis formed by 1340 present-day Eurasians reflects

clustering of individuals that mirrors their geographical relationships. An

interactive version of this figure is presented in our online data visualizer (1).
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fig. S10, and tables S8 to S16) (13). This suggests

that the archaeologically documented spread

of a shared package of plants and animal domes-

ticates from diverse locations across this region

was accompanied by bidirectional spread of

people and mixture with the local groups they

encountered (3, 40, 42, 43). We call this the

Southwest Asian Cline. In the far east of the

Southwest Asian Cline (eastern Iran and Turan)

in individuals from the third millennium BCE,

we detect not only the smallest proportions of

Anatolian farmer–related admixture but also

admixture related to West Siberian Hunter

Gatherers (WSHG), plausibly reflecting admix-

ture from unsampled hunter-gatherer groups

that inhabited this region before the spread of

Iranian farmer–related ancestry into it. This shows

that North Eurasian–related ancestry affected

Turan well before the spread of descendants of

Yamnaya Steppe pastoralists into the region.We

can exclude the possibility that the Yamnayawere

the source of this North Eurasian–related ances-

try, as they had more Eastern European Hunter

Gatherer (EEHG)–related than WSHG-related an-

cestry, and they also carried high frequencies of

mitochondrial DNA haplogroup type U5a as well

as Y chromosome haplogroup types R1b or R1a

that are absent in ancient DNA sampled from Iran

and Turan in this period (tables S93 and S94) (13).

People of the BMAC were not a major
source of ancestry for South Asians

From Bronze Age Iran and Turan, we obtained

genome-wide data for 84 ancient individuals

(3000 to 1400 BCE) who lived in four urban sites

of the BMAC and its immediate successors. The

greatmajority of these individuals fall in a cluster

genetically similar to the preceding groups in

Turan, which is consistent with the hypothesis

that the BMAC coalesced from preceding pre-

urban populations (5). We infer three primary

genetic sources: early Iranian farmer–related

ancestry (~60 to 65%) and smaller proportions of

Anatolian farmer–related ancestry (~20 to 25%)

andWSHG-related ancestry (~10%). Unlike pre-

ceding Copper Age individuals fromTuran, people

of the BMAC cluster also harbored an additional

~2 to 5% ancestry related (deeply in time) to

Andamanese hunter-gatherers (AHG). This evi-

dence of south-to-north gene flow from South

Asia is consistent with the archaeological evi-

dence of cultural contacts between the IVC and

the BMAC and the existence of an IVC trading

colony in northern Afghanistan (although we

lack ancient DNA from that site) (44) and stands

in contrast to our qpAdm analyses showing

that a reciprocal north-to-south spread is un-

detectable. Specifically, our analyses reject the

BMAC and the people who lived before them in

Turan as plausible major sources of ancestry for

diverse ancient and modern South Asians by

showing that their ratio of Anatolian farmer–

related to Iranian farmer–related ancestry is

too high for them to be a plausible source for

South Asians [P < 0.0001, c2 test; (13)] (figs. S50

and S51). A previous study (30) fit a model in

which a population fromCopper Age Turan was

used as a source of the Iranian farmer–related

ancestry in present-day South Asians, thus raising

the possibility that the people of the BMACwhom

the authors correctly hypothesizedwere primarily

derived from the groups that preceded them in

Turanwere amajor source population for South

Asians. However, that study only had access to

two samples from this period compared with the

36we analyze in this study, and it lacked ancient

DNA from individuals from the BMAC period

or from any ancient South Asians. With addi-

tional samples, we have the resolution to show

that none of the large number of Bronze and

Copper Age populations from Turan for which we

have ancient DNA fit as a source for the Iranian

farmer–related ancestry in South Asia.

Steppe pastoralist–derived ancestry
arrived in Turan by 2100 BCE

Our large sample sizes from Central Asia, includ-

ing individuals from BMAC sites, are a particular

strength of this study, allowing us to detect outlier

individuals whose ancestry differs from that of

those living at the same time and place and re-

vealing cultural contacts that would be otherwise

difficult to appreciate (Fig. 2). Around 2300 BCE,

we observe three outliers in BMAC-associated

sites carrying WSHG-related ancestry and we

report data from the third millennium BCE from

three sites in Kazakhstan and one in Kyrgyzstan

that fit as sources for them [related ancestry has

been found in ~3500-BCE Botai culture indi-

viduals (30)]. Yamnaya-derived ancestry arrived

by 2100 BCE, because from 2100 to 1700 BCE

we observe outliers from three BMAC-associated

sites carrying ancestry ultimately derived from

Western_Steppe_EMBA pastoralists, in the dis-

tinctive admixed form typically carried bymany

Middle to Late Bronze Age Steppe groups (with

roughly two-thirds of the ancestry being of

Western_Steppe_EMBA origin, and the rest con-

sistent with deriving from European farmers).

Thus, our data document a southward movement

of ancestry ultimately descended from Yamnaya

Steppe pastoralists who spread into Central Asia

by the turn of the second millennium BCE.

An ancestry profile widespread during
the Indus Valley Civilization

We document 11 outliers—three with radiocar-

bon dates between 2500 and 2000 BCE from the

BMAC site of Gonur and eight with radiocarbon

dates or archaeological-context dates between

3300 and 2000 BCE from the eastern Iranian site

of Shahr-i-Sokhta—that harbored elevated propor-

tions of AHG-related ancestry (range: ~11 to 50%)

and the remainder from a distinctive mixture

of Iranian farmer– andWSHG-related ancestry

(~50 to 89%). These outliers had no detectable

Anatolian farmer–related ancestry, in contrast

with the main BMAC (~20 to 25% Anatolian-

related) and Shahr-i-Sokhta (~16 to 21%) clusters,

allowing us to reject both the main BMAC and

Shahr-i-Sokhta clusters as sources for the outliers

[P < 10
−7
, c2 test; (13)] (table S83). Without an-

cientDNA from individuals buried in IVC cultural

contexts, we cannot make a definitive statement

that the genetic gradient represented by these

11 outlier individuals, which we call the Indus

Periphery Cline, was also an ancestry profile com-

mon in the IVC. Nevertheless, our result provides

six circumstantial lines of evidence for this hy-

pothesis. (i) These individuals had no detectable

Anatolian farmer–related ancestry, suggesting

they descend from groups farther east along the

Anatolia-to-Iran cline of decreasing Anatolian

farmer–related ancestry than any individuals we

sampled from this period. (ii) All 11 outliers had

elevated proportions of AHG-related ancestry, and

two carried Y chromosome haplogroup H1a1d2,

which today is primarily found in southern India.

(iii) At both Gonur and Shahr-i-Sokhta there is

archaeological evidence of exchange with the

IVC (45, 46), and all the outlier individuals we

dated directly fall within the time frame of the

mature IVC. (iv) Several outliers at Shahr-i-Sokhta

were buried with artifacts stylistically linked

to Baluchistan in South Asia, whereas burials
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Box 1. Seven source populations used for distal ancestry modeling.

Anatolia_N, Anatolian farmer–related: Represented by seventhmillenniumBCEwesternAnatolian

farmers (18).

Ganj_Dareh_N, Iranian early farmer–related: Represented by eighth millennium BCE early goat

herders from the Zagros Mountains of Iran (9, 24).

WEHG, Western European hunter-gatherer–related: Represented by ninth millennium BCE

Western Europeans (7, 18, 27, 91). (WEHG and EEHG discussed below were denoted WHG and

EHG in previous studies, but as we coanalyze them with hunter-gatherers from Asia, we modify

the names to specify a European origin.)

EEHG, Eastern European hunter-gatherer–related: Represented by sixth millennium BCE

hunter-gatherers from Eastern Europe (18, 27).

WSHG,West Siberian hunter-gatherer–related: A previously undescribed deep source of Eurasian

ancestry represented in this study by three individuals from the Forest Zone of Central Russia dated

to the sixth millennium BCE.

ESHG, East Siberian hunter-gatherer–related: Represented by sixth millennium BCE hunter-

gatherers from the Lake Baikal region with ancestry deeply related to East Asians (26).

AHG, Andamanese hunter-gatherer–related: Represented by present-day indigenous Andaman

Islanders (53) who we hypothesize are related to unsampled indigenous South Asians (AASI,

Ancient Ancestral South Indians).
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associated with the other ancestries did not

have these linkages (13). (v) In our modeling, the

11 outliers fit as a primary source of ancestry for

86 ancient individuals from post-IVC cultures

living near the headwaters of the Indus River

~1200 to 800 BCE as well as diverse present-day

South Asians, whereas no other ancient genetic

clusters from Turan fit as sources for all these

groups (13) (fig. S50). (vi) The estimated date of

admixture between Iranian farmer–related and

AHG-related ancestry in the outliers is several

millennia before the time they lived (71 ± 15

generations, corresponding to a 95% confidence

interval of ~5400 to 3700 BCE assuming 28 years

per generation) (13, 47). Thus, AHG- and Iranian

farmer–related groupswere in contact well before

the time of themature IVC at ~2600 to 1900 BCE,

as might be expected if the ancestry gradient was

a major feature of a group that was living in the

Indus Valley during the IVC.

The Steppe and Forest Zone

Ancestry clines in Eurasia established
after the advent of farming

The late hunter-gatherer individuals fromnorth-

ernEurasia lie alongawest-to-east hunter-gatherer

gradient of increasing relatedness to East Asians

Narasimhan et al., Science 365, eaat7487 (2019) 6 September 2019 5 of 15

Box 2. Summary of key findings.

Iran and Turan

1. A west-to-east cline of decreasing Anatolian farmer–related ancestry.There was a west-to-east gradient of ancestry across Eurasia in the Copper

andBronzeAges—theSouthwest Asian Cline—withmore Anatolian farmer–related ancestry in thewest andmoreWSHG- orAASI-related ancestry in the east,

superimposed on primary ancestry related to early Iranian farmers. The establishment of this gradient correlates in time to the spread of plant-based

agriculture across this region, raising thepossibility that people of Anatolian ancestry spread this technologyeast just as they helped spread itwest into Europe.

2. People of the BMAC were not a major source of ancestry for South Asians. The primary BMAC population largely derived from preceding

local Copper Age peoples who were, in turn, closely related to people from the Iranian plateau and had little of the Steppe ancestry that is

ubiquitous in South Asia today.

3. Steppe pastoralist–derived ancestry arrived in Turan by 2100 BCE.We find no evidence of Steppe pastoralist–derived ancestry in groups at

BMAC sites before 2100 BCE, but multiple outlier individuals buried at these sites show that by ~2100 to 1700 BCE, BMAC communities were

regularly interacting with peoples carrying such ancestry.

4. An ancestry profile widespread during the Indus Valley Civilization. We document a distinctive ancestry profile—~45 to 82% Iranian

farmer–related and ~11 to 50% AASI (with negligible Anatolian farmer–related admixture)—present at two sites in cultural contact with the Indus

Valley Culture (IVC). Combined with our detection of this same ancestry profile (in mixed form) about a millennium later in the post-IVC Swat Valley,

this documents an Indus Periphery Cline during the flourishing of the IVC. Ancestors of this group formed by admixture ~5400 to 3700 BCE.

The Steppe and Forest Zone

1. Ancestry clines in North Eurasia established after the advent of farming. Before the spread of farmers and herders, northern Eurasia was

characterized by a west-to-east gradient of very divergent hunter-gatherer populations with increasing proportions of relatedness to present-day

East Asians: from Western European hunter-gatherers (WEHG), to Eastern European hunter-gatherers (EEHG), to West Siberian hunter-gatherers

(WSHG), to East Siberian hunter-gatherers (ESHG). Mixture of people along this ancestry gradient and its counterpart to the south formed five later

clines after the advent of farming, of which the three northern ones are the European Cline, the Caucasus Cline, and the Central Asian Cline.

2. A distinctive ancestry profile stretching from Eastern Europe to Kazakhstan in the Bronze Age.We add >100 samples from the previously

described Western_Steppe_MLBA genetic cluster, including individuals associated with the Corded Ware, Srubnaya, Petrovka, and Sintashta

archaeological complexes, and characterized by a mixture of about two-thirds ancestry related to Yamnaya Steppe pastoralists (from the Caucasus

Cline) and European farmers (from the European Cline), suggesting that this population formed at the geographic interface of these two groups in

Eastern Europe. Our analysis suggests that in the Central Steppe and Minusinsk Basin in the Middle to Late Bronze Age, Western_Steppe_MLBA

ancestry mixed with ~9% ancestry from previously established people from the region carrying WSHG-related ancestry to form a distinctive

Central_Steppe_MLBA cluster that was the primary conduit for spreading Yamnaya Steppe pastoralist–derived ancestry to South Asia.

3. Bidirectional mobility along the Inner Asian Mountain Corridor. Beginning in the third millennium BCE and intensifying in the second

millennium BCE, we observe multiple individuals in the Central Steppe who lived along the Inner Asian Mountain Corridor and who harbored admixture

from Turan, documenting northward movement into the Steppe in this period. By the end of the second millennium BCE, these people were joined by

numerous outlier individuals with East Asian–related admixture that became ubiquitous in the region by the Iron Age (29, 52). This East Asian–related

admixture is also seen in later groups with known cultural impacts on South Asia, including Huns, Kushans, and Sakas, and is hardly present in the two

primary ancestral populations of South Asia, suggesting that the Steppe ancestry widespread in South Asia derived from pre–Iron Age Central Asians.

South Asia

1. Three ancestry clines that succeeded each other in time in South Asia. We identify a distinctive trio of source populations that fits

geographically and temporally diverse South Asians since the Bronze Age: a mixture of AASI, an Indus Periphery Cline group with predominantly

Iranian farmer–related ancestry, and Central_Steppe_MLBA. Two-way clines that are well modeled as mixtures of pairs of populations that are

themselves formed of these three sources succeeded each other in time: before 2000 BCE, the Indus Periphery Cline had no detectable Steppe

ancestry, beginning after 2000 BCE the Steppe Cline, and finally the Modern Indian Cline.

2. The ASI and ANI arose as Indus Periphery Cline people mixed with groups to the north and east. An ancestry gradient of which the Indus

Periphery Cline individuals were a part played a pivotal role in the formation of both the two proximal sources of ancestry in South Asia: a minimum

of ~55% Indus Periphery Cline ancestry for the ASI and ~70% for the ANI. Today there are groups in South Asia with very similar ancestry to the

statistically reconstructed ASI, suggesting that they have essentially direct descendants today. Much of the formation of both the ASI and ANI

occurred in the second millennium BCE. Thus, the events that formed both the ASI and ANI overlapped the time of the decline of the IVC.

3. Steppe ancestry in modern South Asians is primarily from males and disproportionately high in Brahmin and Bhumihar groups. Most of

the Steppe ancestry in South Asia derives from males, pointing to asymmetric social interaction between descendants of Steppe pastoralists and

peoples of the Indus Periphery Cline. Groups that view themselves as being of traditionally priestly status, including Brahmins who are traditional

custodians of liturgical texts in the early Indo-European language Sanskrit, tend (with exceptions) to have more Steppe ancestry than expected on

the basis of ANI-ASI mixture, providing an independent line of evidence for a Steppe origin for South Asia’s Indo-European languages.
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Fig. 2. Outlier analysis reveals ancient contacts between sites.We plot

the average of principal component 1 (x axis) and principal component

2 (y axis) for the West Eurasian and All Eurasian PCA plots, as we found that

this aids visual separation of the ancestry profiles. (A) In individuals of the

BMAC and successor sites, we observe a main cluster as well as numerous

outliers: outliers >2000 BCE with admixture related to WSHG, outliers

>2000 BCE on the Indus Periphery Cline (with an ancestry similar to the

outliers at Shahr-i-Sokhta), and outliers after 2000 BCE that reveal how

Central_Steppe_MLBA ancestry had arrived. (B) At Shahr-i-Sokhta in

eastern Iran, there are two primary groupings: one with ~20% Anatolian

farmer–related ancestry and no detectable AHG-related ancestry, and the

other with ~0% Anatolian farmer–related ancestry and substantial AHG-

related ancestry (Indus Periphery Cline). (C) In the Middle to Late Bronze

Age Steppe, we observe, in addition to the Western_Steppe_MLBA and

Central_Steppe_MLBA clusters (indistinguishable in this projection), out-

liers admixed with other ancestries. The BMAC-related admixture in

Kazakhstan documents northward gene flow onto the Steppe and

confirms the Inner Asian Mountain Corridor as a conduit for movement of

people. (D) In the Late Bronze Age and Iron Age of northernmost South

Asia, we observe a main cluster consistent with admixture between

peoples of the Indus Periphery Cline and Central_Steppe_MLBA and

variable Steppe pastoralist–related admixture.
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(Fig. 3). In the Neolithic and Copper Ages,

hunter-gatherers at different points along this

cline mixed with people with ancestry at differ-

ent points along a southern cline to form five

later clines, two of which were in the south (the

Southwest Asian Cline and the Indus Periphery

Cline described in the previous section) and three

of which were in northern Eurasia (Fig. 3). Fur-

thest to the west in the Steppe and Forest Zone

there was the European Cline, established by the

spread of farmers from Anatolia after ~7000 BCE

and mixture with Western European hunter-

gatherers (18). In far eastern Europe at latitudes

spanning the Black andCaspian Seas therewas the

Caucasus Cline, consisting of a mixture of Eastern

European hunter-gatherers and Iranian farmer–

related ancestry with additional Anatolian farmer–

related ancestry in some groups (48). East of the

Urals, we detect a Central Asian Cline,withWSHG

individuals atoneextremeandCopperAgeandEarly

Bronze Age individuals from Turan at the other.

A distinctive ancestry profile stretching
from Eastern Europe to Kazakhstan in
the Bronze Age

Beginning around 3000BCE, the ancestry profiles

ofmany groups inEurasiawere transformed by the

spread of Yamnaya Steppe pastoralist–related ances-

try (Western_Steppe_EMBA) from its source in the

Caucasus Cline (9, 48) to a vast region stretching

from Hungary in the west to the Altai mountains

in the east (7, 8) (Fig. 3). Over the next twomillen-

nia, this ancestry spread further while admixing

with local groups, eventually reaching the Atlantic

shores of Europe in the west and South Asia in

the southeast. The source of theWestern_Steppe_

EMBA ancestry that eventually reached Central

and South Asia was not the initial eastward ex-

pansion but instead a secondary expansion that

involved a group that had ~67%Western_Steppe_

EMBA ancestry and ~33% ancestry from a point

on the European Cline (8) (Fig. 3). We replicate

previous findings that this group included people

of the Corded Ware, Srubnaya, Petrovka, and

Sintashta archaeological complexes spreading

over a vast region from the border of Eastern

Europe to northwestern Kazakhstan (8, 18, 30),

and our dataset adds more than one hundred

individuals from thisWestern_Steppe_MLBA

cluster. We also detect an additional cluster,

Central_Steppe_MLBA, which is differentiated

from Western_Steppe_MLBA (P = 7 × 10
−6

by

qpAdm) because it carries ~9% additional an-

cestry derived from Bronze Age pastoralists of

the Central Steppe of primarilyWSHG-related

ancestry (Central_Steppe_EMBA). Thus, indi-

viduals with Western_Steppe_MLBA ancestry

admixed with local populations as they inte-

grated eastward and southward.

Bidirectional mobility along the Inner
Asian Mountain Corridor

As in Iran/Turan, the outlier individuals provide

crucial information about human interaction.

Our analysis of 50 individuals from theSintashta

culture cemetery of Kamennyi Ambar 5 reveals

multiple groups of outliers that we directly radio-

carbon dated to be contemporaries of the main

cluster but that were also genetically distinctive,

indicating that thiswas a cosmopolitan site (Fig. 2).

One set of outliers had elevated proportions of

Central_Steppe_EMBA (largelyWSHG-related)

ancestry, another had elevatedWestern_Steppe_

EMBA (Yamnaya-related), and a third had ele-

vated EEHG-related ancestry.

In the Central Steppe (present-day Kazakhstan),

an individual from one site dated to between

2800 and 2500 BCE, and individuals from three

sites dated to between~1600 and 1500BCE, show

significant admixture from Iranian farmer–related

populations that is well-fitted by themain BMAC

cluster, demonstrating northward gene flow from

Turan into the Steppe at approximately the same

time as the southward movement of Central_

Steppe_MLBA-related ancestry through Turan to

SouthAsia. Thus, the archaeologically documented

spread of material culture and technology both

north and south along the Inner AsianMountain

Corridor (3, 49, 50, 51), which began as early as the

middle of the thirdmillenniumBCE,was associated

with substantial movements of people (Fig. 2).

We also observe individuals from Steppe

sites (Krasnoyarsk) dated to between ~1700 and

1500 BCE that derive up to ~25% ancestry from

a source related to East Asians (well-modeled

as ESHG), with the remainder best modeled as

Western_Steppe_MLBA.By the Late Bronze Age,

ESHG-related admixture became ubiquitous, as

documentedbyour time transect fromKazakhstan

and ancient DNAdata from the Iron Age and from

later periods in Turan and the Central Steppe, in-

cludingScythians, Sarmatians,Kushans, andHuns

(29, 52). Thus, these first millennium BCE to first

millennium CE archaeological cultures with docu-

mented cultural and political impacts on South

Asia cannot be important sources for the Steppe

pastoralist–related ancestry widespread in South

Asia today (because present-day South Asians

have too little East Asian–related ancestry to be

consistent with deriving from these groups), pro-

viding an example of how genetic data can rule out

scenarios that are plausible on the basis of the

archaeological and historical evidence alone (13)

(fig. S52). Instead, our analysis shows that the only

plausible source for the Steppe ancestry is Steppe

Middle to Late Bronze Age groups, who not only fit

as a source for South Asia but who we also docu-

ment as having spread into Turan andmixed with

BMAC-related individuals at sites in Kazakhstan in

this period. Taken together, these results identify a

narrow time window (first half of the second mil-

lennium BCE) when the Steppe ancestry that is

widespread today in SouthAsiamust have arrived.

The genomic formation of human

populations in South Asia

Three ancestry clines that succeeded
each other in time in South Asia

Previous work has shown that South Asians har-

bor ancestry from peoples related to ancient

groups in northern Eurasia and Iran, East Asians,

and Australasians (9). Here we document the

process through which these deep sources of

ancestry mixed to form later groups.

Webeginwith thepre-2000-BCE IndusPeriphery

Cline, described in an earlier section and detected

in 11 outliers from two sites in cultural contact

with the IVC (Fig. 4). We can jointly model all

individuals in this cline as amixture of two source

populations: One end of the cline is consistent

with being entirely AHG-related, and the other

is consistent with being ~90% Iranian farmer–

related and ~10%WSHG-related (Fig. 4) (13). Peo-

ple fitting on the Indus Periphery Cline constitute

the majority of the ancestors of present-day South

Asians. Through formalmodeling,wedemonstrate

that it is this contribution of Indus Periphery Cline

people to later South Asians, rather thanwestward

gene flow bringing an ancestry unique to South

Asia onto the Iranian plateau, that explains the

high degree of shared ancestry between present-

day South Asians and early Holocene Iranians

(9, 13).

We next characterized the post-2000-BCE

Steppe Cline, represented in our analysis by 117

individuals dating to between 1400 BCE and

1700 CE from the Swat and Chitral districts of

northernmost South Asia (Figs. 2 and 4). We

found that we could jointly model all individuals

on the Steppe Cline as a mixture of two sources,

albeit different from the two sources in the earlier

cline. One end is consistent with a point along the

Indus Periphery Cline. The other end is consistent

with a mixture of ~41% Central_Steppe_MLBA an-

cestry and ~59% from a subgroup of the Indus

Periphery Cline with relatively high Iranian

farmer–related ancestry (13) (fig. S50).

To understand the formation of the Modern

Indian Cline, we searched for triples of popula-

tions that could fit as sources for diverse present-

day South Asian groups as well as peoples of the

Steppe Cline. All fittingmodels include as sources

Central_Steppe_MLBA (or a group with a similar

ancestry profile), a group of Indus Periphery Cline

individuals, and either AHG or a subgroup of

Indus Periphery Cline individuals with relatively

high AHG-related ancestry (13) (fig. S51). Co-

analyzing 140 diverse South Asian groups (10)

that fall on a gradient in PCA (13), we show that

while there are three deep sources, just as in the

case of the earlier two clines the greatmajority of

groups on theModern Indian Cline can be jointly

modeled as amixture of two populations that are

mixed from the earlier three. Althoughwe do not

have ancient DNA data from either of the two

statistically reconstructed source populations for

the Modern Indian Cline, the ASI or the ANI, in

what follows, we coanalyze our ancient DNAdata

in conjunction with modern data to characterize

the exact ancestry of the ASI and to provide

constraints on the ANI.

The ASI and ANI arose as Indus
Periphery Cline people mixed with

groups to the north and east

To gain insight into the formation of the ASI,we

extrapolated to the smallest possible proportion

of West Eurasian–related ancestry on the Modern

Indian Cline by setting the Central_Steppe_MLBA

ancestry proportion to zero in our model. We es-

timate a minimum of ~55% ancestry from people
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Fig. 3. Ancestry transformations in Holocene Eurasia. (A) Ancestry

clines before and after the advent of farming.We document a South Eurasian

Early Holocene Cline of increasing Iranian farmer– and West Siberian

hunter-gatherer–related ancestry moving west-to-east from Anatolia to Iran,

as well as a North Eurasian Early Holocene Cline of increasing relatedness

to EastAsiansmovingwest-to-east fromEurope toSiberia.Mixtures of peoples

along these two clines following the spread of farming formed five later

gradients (shaded): moving west-to-east: the European Cline, the Caucasus

Cline from which the Yamnaya formed, the Central Asian Cline that

characterized much of Central Asia in the Copper and Bronze Ages, the

Southwest Asian Cline established by spreads of farmers in multiple directions

from several loci of domestication, and the Indus Periphery Cline. (B) Following

the appearance of the Yamnaya Steppe pastoralists,Western_Steppe_EMBA

(Yamnaya-like) ancestry then spread across this vast region.We use arrows

to show plausible directions of spread of increasingly diluted ancestry (the

arrows are not meant as exact routes, which we do not have enough sampling

to determine at present). Rough estimates of the timing of the arrival of this

ancestry and estimated ancestry proportions are shown.
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on the Indus Periphery Cline [representing the

Indus Periphery Cline by the individual on it with

themost Iranian farmer–related ancestry, which

we call Indus_Periphery_West, and modeling

the reminder of the ancestry as deriving from

an AHG-related group (13)]. We find that several

tribal groups from southern India are consistent

with having no Central_Steppe_MLBA ancestry

(13). The fact that these individualsmatch themost

extreme possible position for the ASI reveals that

nearly direct descendants of theASI live in South

Asia today and furthermore allows us to make a

precise statement about the ancestry profile of

the ASI. In particular, the fact that they harbor

substantial Iranian farmer–related ancestry (via

Narasimhan et al., Science 365, eaat7487 (2019) 6 September 2019 9 of 15

Fig. 4. The genomic formation of South Asia. (A) The degree of allele

sharing with southern Asian hunter-gatherers (AASI) measured by

f4(Ethiopia_4500BP, X; Ganj_Dareh_N, AHG) and with Steppe pastoralists

measured by f4(Ethiopia_4500BP, X; Ganj_Dareh_N, Central_Steppe_MLBA)

reveals three ancestry clines that succeeded each other in time: the Indus

Periphery Cline before ~2000 BCE, the Steppe Cline represented by northern

South Asian individuals after ~2000 BCE, and the Modern Indian Cline.

(B) Modeling South Asians as a mixture of Central_Steppe_MLBA, AHG

(as a proxy for AASI) and Indus_Periphery_West (the individual from the

Indus Periphery Cline with the least AASI ancestry). Groups along the edges

of the triangle fit a two-way model, and in the interior only fit a three-way

model.The 140 present-day South Asian groups on theModern Indian Cline

are shown as small dots. (C) Plot of the proportion of Central_Steppe_MLBA

ancestry on the autosomes (x axis) and the Ychromosome (y axis)

shows that the source of this ancestry is primarily from females in Late

Bronze Age and Iron Age individuals from the Swat District of northernmost

South Asia, and primarily from males in most present-day South Asians.

(D) Groups that traditionally view themselves as being of priestly

status (Brahmin, Pandit, and Bhumihar, but excluding Catholic Brahmins)

tend to have a significantly higher ratio of Central_Steppe_MLBA to

Indus_Periphery_Cline ancestry than other groups and are labeled in red in

this panel and in (B).
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the Indus Periphery Cline) disproves earlier

suggestions that the ASI might not have any

ancestry related toWest Eurasians (11). Using the

DATES software, we estimate an average of

107 ± 11 generations since admixture of the

Iranian farmer–related andAHG-related groups

in one of these groups,Palliyar. This corresponds

to a 95% confidence interval of 1700 to 400 BCE,

assuming 28 years per generation (47). Thus, the

ASI were not fully formed at the time of the

IVC and instead must have continued to form

through mixture after its decline as material

culture typical of the IVC spread eastward (53)

and Indus Periphery Cline ancestry mixed with

people of less West Eurasian relatedness.

We also obtained additional evidence for a

late (Bronze Age) formation of theASI by building

an admixture graph using qpGraph, comodeling

Palliyar and Juang (an Austroasiatic-speaking

group in India with lowWest Eurasian related-

ness) (Fig. 5). The graph fits the component of

South Asian ancestry with no West Eurasian

relatedness (Ancestral Ancient South Asians,

AASI) as an Asian lineage that split off around

the time that East Asian, Andaman Islander, and

Papuan ancestors separated from each other,

consistent with the hypothesis that eastern and

southern Asian lineages derive from an eastward

spread that in a short span gave rise to lineages

leading toAASI, East Asians, Andamanese hunter-

gatherers, and Papuans (54) (Fig. 5). The Juang

cannot be fit through a mixture of ASI ancestry

and ancestry related to Austroasiatic language

speakers and instead can only be fit by model-

ing additional ancestry from AASI, showing that

at the time Austroasiatic groups formed in South

Asia, groups with less Iranian farmer–related an-

cestry than in the ASI were also present. Austro-

asiatic languages are hypothesized to have spread

into South Asia in the third millennium BCE [on

the basis of hill cultivation systems hypothesized

to be associated with the spread of Austroasiatic

languages (41)], and thus the ancestry profile of

the Juang provides an independent line of evi-

dence for a late formation of theASI (in the Bronze

Age and plausibly after the decline of the IVC).

To shed light on the formation of the statis-

tically reconstructed ANI, we return to the Swat

Valley time transect that formed the Steppe Cline

after 2000 BCE. The Modern Indian Cline inter-

sects the Steppe Cline at a position close to the

Narasimhan et al., Science 365, eaat7487 (2019) 6 September 2019 10 of 15

800,000-400,000

54,000-44,000

5,000-3,000

Fig. 5. Admixture graph model. The largest deviation between empirical

and theoretical f-statistics is |Z|= 2.9, indicating a good fit considering

the large number of f-statistics analyzed. Admixture events are shown as

dotted lines labeled by proportions, with the minor ancestry in gray.

The present-day groups are shown in orange ovals, the ancient ones in

blue, and unsampled groups in white. (The ovals and admixture events are

positioned according to guesses about their relative dates to help in

visualization, although the dates are in no way meant to be exact.) In

this graph, we do not attempt to model the contribution of WSHG and

Anatolian farmer–related ancestry and thus cannot model Central_

Steppe_EMBA, the proximal source of Steppe ancestry in South Asia

(instead we model the Steppe ancestry in South Asia through the

more distally related Yamnaya). However, the admixture graph does

highlight several key findings of the study, including the deep separation

of the AASI from other Eurasian lineages and the fact that some

Austroasiatic-speaking groups in South Asia (e.g., Juang) harbor

ancestry from a South Asian group with a higher ratio of AASI-related

to Iranian farmer–related ancestry than any groups on the Modern

Indian Cline, thus revealing that groups with substantial Iranian farmer–

related ancestry were not ubiquitous in peninsular South Asia in the

third millennium BCE when Austroasiatic languages likely spread across

the subcontinent.
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position of the Kalash, the group in northwest

South Asia with the highest ANI ancestry pro-

portion (55) (Fig. 4). The published estimate

of admixture in the Kalash is 110 ± 12 genera-

tions (55), suggesting a post-IVC date of forma-

tion of the ANI paralleling the post-IVC date of

formation of theASI. Further evidence for a post-

IVC integration of Steppe ancestry into SouthAsia

comes from ancient individuals on the Steppe

Cline (along which the ANI could theoretically

have formed) whose admixture date for Steppe

ancestry is also post-IVC. Specifically, we esti-

mate the date of admixture into the Late Bronze

Age and Iron Age individuals from the Swat

District of northernmost South Asia to be, on

average, 26 generations before the date that they

lived, corresponding to a 95% confidence interval

of ~1900 to 1500 BCE. This time scale for the

arrival of Steppe ancestry in the region is con-

sistent with our observation of six outlier indi-

viduals in Turan who lived between ~2000 and

1500 BCE and carry this ancestry in mixed form

(Fig. 2) and is also consistent with our finding

that the R1a Y chromosome associated with

Central_Steppe_MLBA ancestry in South Asia is

also present in the Swat District Late Bronze and

Iron Age individuals (two copies).

Taken together, these results show that neither

of the two primary source populations of the

Modern Indian Cline, the ANI or ASI, was fully

formed before the turn of the second millen-

nium BCE.

Steppe ancestry in modern South Asians
is primarily from males and
disproportionately high in Brahmin and
Bhumihar groups

In the Late Bronze Age and Iron Age individuals

of the Swat Valley, we detect a significantly lower

proportion of Steppe admixture on the Y chromo-

some (only 5% of the 44 Y chromosomes of the

R1a-Z93 subtype that occurs at 100% frequency

in the Central_Steppe_MLBAmales) compared

with ~20% on the autosomes (Z = −3.9 for a defi-

ciency frommales under the simplifying assump-

tion that all the Y chromosomes are unrelated to

each other since admixture and thus are statis-

tically independent), documenting how Steppe

ancestry was incorporated into these groups

largely through females (Fig. 4). However, sex

bias varied in different parts of South Asia, as in

present-day South Asians we observe a reverse

pattern of excess Central_Steppe_MLBA–related

ancestry on the Y chromosome compared with

the autosomes (Z = 2.7 for an excess frommales)

(13, 56) (Fig. 4). Thus, the introduction of lineages

from Steppe pastoralists into the ancestors of

present-day South Asians was mediated mostly

by males. This bias is similar in direction to what

has been documented for the introduction of

Steppe ancestry into Iberia in far westernEurope,

although it is less extreme than the bias reported

in that case (57).

Our analysis of Steppe ancestry also identified

six groupswith a highly elevated ratio ofCentral_

Steppe_MLBA– to Indus_Periphery_West–related

ancestry compared with the expectation for the

model at the Z < −4.5 level (Fig. 4). The strongest

two signals were in Brahmin_Tiwari (Z =−7.9) and

Bhumihar_Bihar (Z = −7.0). More generally,

there is a notable enrichment in groups that

consider themselves to be of traditionally priestly

status: five of the six groups with Z < −4.5 were

Brahmins or Bhumihars even though they make

up only 7 to 11% of the 140 groups analyzed (P <

10
−12

by a c2 test, assuming all the groups evolved

independently). We caution that this is not a

formal test, as there is an unknown degree of

shared ancestry among groups since they formed

bymixture and because our decisions aboutwhich

groups to include in the analysis were not made

in a blinded way; for example, we excluded four

“Catholic Brahmin” groups with strong evidence

of substantial shared ancestry in the past mil-

lennium (10), which makes them not statistically

independent (Fig. 4 and table S5) (13). In addition,

the classification of groups as Brahmin may have

changed over time, weakening the correlation to

genetics. Nevertheless, the fact that traditional

custodians of liturgy in Sanskrit (Brahmins) tend

to have more Steppe ancestry than is predicted

by a simple ASI-ANImixture model provides an

independent line of evidence—beyond the dis-

tinctive ancestry profile shared between South

Asia and Bronze Eastern Europe mirroring

the shared features of Indo-Iranian and Balto-

Slavic languages (58)—for a Bronze Age Steppe

origin for South Asia’s Indo-European languages.

Discussion

Our analysis reveals that the ancestry of the

greater South Asian region in the Holocene was

characterized by at least three genetic gradients.

Before ~2000 BCE, there was the Indus Periphery

Cline consisting of people with different propor-

tions of Iranian farmer– and AASI-related ances-

try, which we hypothesize was a characteristic

feature of many IVC people. The ASI formed

after 2000 BCE as a mixture of a point along this

cline with South Asians with higher proportions

of AASI-related ancestry. Between ~2000 and

1000 BCE, people of largely Central_Steppe_

MLBA ancestry expanded toward South Asia,

mixing with people along the Indus Periphery

Cline to form the Steppe Cline. Multiple points

along the Steppe Cline are represented by indi-

viduals of the Swat Valley time transect, and

statistically we find that the ANI, one of the two

primary source populations of South Asia, can fit

along the Steppe Cline. After ~2000 BCE, mix-

tures of heterogeneous populations—the ASI

and ANI—combined to form theModern Indian

Cline, which is represented today in diverse

groups in South Asia (Fig. 4).

Our finding, based on the sizes of blocks of

ancestry (13) (fig. S59), that the mixture that

formed the Indus Periphery Cline occurred by

~5400 to 3700 BCE—at least a millennium be-

fore the formation of the mature IVC—raises two

possibilities. One is that Iranian farmer–related

ancestry in this group was characteristic of the

Indus Valley hunter-gatherers in the same way

as it was characteristic of northern Caucasus and

Iranian plateau hunter-gatherers. The presence

of such ancestry in hunter-gatherers from Belt

and Hotu Caves in northeastern Iran increases

the plausibility that this ancestry could have

existed in hunter-gatherers farther east. An al-

ternative is that this ancestry reflects move-

ment into South Asia from the Iranian plateau

of people accompanying the eastward spread of

wheat and barley agriculture and goat and sheep

herding as early as the seventh millennium BCE

and forming early farmer settlements, such as

those at Mehrgarh in the hills flanking the Indus

Valley (59, 60). However, this is in tension with the

observation that the Indus PeripheryClinepeople

had little if any Anatolian farmer–related ances-

try, which is strongly correlatedwith the eastward

spread of crop-based agriculture in our dataset.

Thus, although our analysis supports the idea that

eastward spread of Anatolian farmer–related

ancestry was associated with the spread of farm-

ing to the Iranian plateau and Turan, our results

do not support large-scale eastward movements

of ancestry from western Asia into South Asia

after ~6000 BCE (the time after which all ancient

individuals from Iran in our data have substan-

tial Anatolian farmer–related ancestry, in contrast

to South Asians who have very little). Languages in

pre-state societies usually spread throughmove-

ments of people (61), and thus the absence of

much Anatolian farmer–related ancestry in the

Indus Periphery Cline suggests that it is unlikely

that the Indo-European languages spoken in

South Asia today originate from the spread of

farming from West Asia.

Our results not only provide evidence against

an Iranian plateau origin for Indo-European

languages in South Asia but also evidence for

the theory that these languages spread from the

Steppe. Although ancient DNA has documented

westward movements of Steppe pastoralist an-

cestry providing a likely conduit for the spread

of many Indo-European languages to Europe

(7, 8), the chain of transmission into South Asia

has been unclear because of a lack of relevant

ancient DNA. Our observation of the spread of

Central_Steppe_MLBA ancestry into South Asia

in the first half of the second millennium BCE

provides this evidence, which is particularly nota-

ble because it provides a plausible genetic expla-

nation for the linguistic similarities between

the Balto-Slavic and Indo-Iranian subfamilies of

Indo-European languages, which despite their

vast geographic separation share the “satem” in-

novation and “ruki” sound laws (62). If the spread

of people from the Steppe in this period was a

conduit for the spread of South Asian Indo-

European languages, then it is striking that

there are so few material culture similarities

between the Central Steppe and South Asia in the

Middle to Late Bronze Age (i.e., after the middle

of the second millennium BCE). Indeed, the

material culture differences are so substantial

that some archaeologists report no evidence of

a connection. However, lack of material culture

connections does not provide evidence against

spread of genes, as has been demonstrated in

the case of the Beaker Complex, which originated

largely in western Europe but in Central Europe
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was associatedwith skeletons that harbored~50%

ancestry related to Yamnaya Steppe pastoralists

(20). Thus, in Europe we have an unambiguous

example of people with ancestry from the Steppe

making profound demographic impacts on the

regions into which they spread while adopting

important aspects of local material culture. Our

findings document a similar phenomenon in

South Asia, with the locally acculturated popu-

lation harboring up to ~20%Western_Steppe_

EMBA–derived ancestry according to our model-

ing (via the up to ~30% ancestry contributed

by Central_Steppe_MLBA groups) (Fig. 3). Our

analysis also provides a second line of evidence

for a linkage between Steppe ancestry and Indo-

European languages. Steppe ancestry enrichment

in groups that view themselves as being of tra-

ditionally priestly status is notable, as some of

these groups, including Brahmins, are tradi-

tional custodians of literature composed in early

Sanskrit. A possible explanation is that the influx

ofCentral_Steppe_MLBA ancestry into SouthAsia

in the middle of the second millennium BCE

created a metapopulation with varied propor-

tions of Steppe ancestry, with people of greater

Steppe ancestry (or admixing less with Indus

Periphery Cline groups) tending to be more

strongly associatedwith Indo-European culture.

Because of strong endogamy, which kept groups

generally isolated from neighbors for thousands

of years (7), some of this population substructure

persists in South Asia among present-day cus-

todians of Indo-European texts.

Our findings also shed light on the origin of

the second-largest language group in South Asia,

Dravidian. The strong correlation between ASI

ancestry and present-day Dravidian languages

suggests that the ASI, which we have shown

formed as groups with ancestry typical of the

Indus Periphery Cline moved south and east

after the decline of the IVC to mix with groups

with more AASI ancestry, most likely spoke an

early Dravidian language. A possible scenario

combining genetic data with archaeology and

linguistics is that proto-Dravidian was spread

by peoples of the IVC along with the Indus

Periphery Cline ancestry component of the ASI.

Nongenetic support for an IVC origin of Dravidian

languages includes the present-day geographic

distribution of these languages (in southern India

and southwestern Pakistan) and a suggestion that

some symbols on ancient Indus Valley seals de-

note Dravidian words or names (63, 64). An alter-

native possibility is that proto-Dravidian was

spread by the half of the ASI’s ancestry that was

not from the Indus Periphery Cline and instead

derived from the south and the east (peninsular

South Asia). The southern scenario is consistent

with reconstructions of Proto-Dravidian terms for

flora and faunaunique to peninsular India (65, 66).

Finally, we highlight a remarkable parallel be-

tween the prehistory of South Asia and Europe.

In both subcontinents of Eurasia, there were

exchanges between people related to Southwest

Asians and peninsular hunter-gatherers; mix-

tures of these groups led to the Indus Periphery

Cline in South Asia and the European Cline in

Europe. In both subcontinents, people arriving

in the second and third millennia BCE who de-

scended from mixtures of people related to

Yamnaya Steppe pastoralists and European farm-

ersmixed further with local populations: in South

Asia forming theANIand inEurope forminggroups

like that of the Beaker Complex. In both cases,

mixtures of these heterogeneous populations—

those with Steppe pastoralist–related admixture

and those without—drive the modern ancestry

clines in both regions (Fig. 3). However, there are

also profound differences between the Bronze

Age and Neolithic spreads of ancestry across the

two subcontinents. One is that the maximum

proportion of peninsular hunter-gatherer ances-

try is higher in SouthAsia (AASI ancestry of up to

~60%) than Europe (WEHG ancestry of up to

~30%) (7), which could reflect stronger ecological

or cultural barriers to the spread of people in

South Asia than in Europe, allowing the previ-

ously established groups more time to adapt and

mixwith incoming groups. A second difference is

the smaller proportion of Steppe pastoralist–

related ancestry in South Asia compared with

Europe, its later arrival by ~500 to 1000 years,

and a lower (albeit still significant) male sex bias

in the admixture, factors that help to explain the

continued persistence of a large fraction of

non–Indo-European speakers amongst people

of present-day South Asia today. The situation

in South Asia is somewhat reminiscent of Med-

iterranean Europe, where the proportion of Steppe

ancestry is considerably lower than that of North-

ern and Central Europe (Fig. 3) and where many

non–Indo-European languages are attested in clas-

sical times (67). Further studies of ancient DNA

from South Asia and the linguistically related

Iranian world will extend and add nuance to the

model presented here.

Materials and methods

Ancient DNA laboratory work

For the skeletal elements that we were not able

to transport from field sites, we drilled directly

into bone, for the most part focusing on inner

ear portions of petrous bones using amethod for

sampling from the cranial base (CBD) (68). The

great majority of skeletal elements were pre-

pared in dedicated ancient DNA clean rooms

at Harvard Medical School, University College

Dublin, the University of Vienna, or the Max

Planck Institute for Evolutionary Anthropology

in Leipzig either by drilling, or by sandblast-

ing to isolate a bone piece followed by milling

(tables S1 and S2).

All the molecular work except for that on a

single individual (Darra-i-Kur) was carried out

at Harvard Medical School. We extracted DNA

using a method that is optimized to retain small

DNA fragments. We implemented this method

either using a manual method based on silica

spin columns (565 libraries) (14, 15), or with the

assistance of robotic liquid handlers using

silica coated magnetic beads and Buffer D (149

libraries) (69). We converted the DNA into a

form that could be sequenced using a double-

stranded library preparation protocol (711 libra-

ries) (17) and a single stranded library prepara-

tion protocol (3 libraries) (70). For all but four of

the double stranded libraries, we pre-treatedwith

amixture of the enzymesUracil-DNAGlycosylase

(UDG) and Endo VIII (USER, New England

Biolabs) to greatly reduce the cytosine-to-

thymine damage characteristic of ancient DNA

sequences while retaining damage in both

terminal bases (17). The remaining four libraries

were not pre-treated with USER (71). The three

single-stranded libraries were also pre-treated

with USER in a way that results in a similar

damage pattern (70). We preparedmost double

stranded libraries (n = 524) with the assistance of

a robotic liquidhandler, substituting theMinElute

columns used for cleaning up reactions inmanual

processing with silica coated magnetic beads in

robotic processing, and the MinElute column-

based PCR cleanup at the end of library prepa-

ration with SPRI beads (72, 73). We enriched all

libraries both for sequences overlapping mito-

chondrialDNA (74), and for sequences overlapping

about 1.2 million nuclear targets (7, 18, 19)

(table s2). After indexing the enrichment products

in away that assigned a unique index combination

to each library (75), we sequenced the enriched

products on an Illumina NextSeq500 instrument

using v.2 150 cycle kits for 2 × 76 cycles and 2 ×

7 cycles (2 × 8 for single-stranded libraries), and

sequenced up to the point that the expected num-

ber of additional SNPs covered per 100 additional

read pairs sequenced was less than about 1. We

also shotgun-sequenced libraries to assess the

fraction of sequences that mapped to the human

genome.

To analyze the data, we began by sorting the

read pairs by searching for the expected identi-

fication indices and barcodes for each library,

allowing up to one mismatch from the expected

sequence in each case.We removed adapters and

merged together sequences requiring a 15 base

pair overlap (allowing up to one mismatch),

taking the highest quality base in the merged

segment to represent the allele. We mapped the

resulting sequences to the hg19 human reference

[GRCh37, the version used for the 1000 Genomes

project (76)] using the samse command of BWA

(77) (version 0.6.1). We removed duplicate se-

quences (mapping to the same position in the

genome and having the same barcode pair), and

merged libraries corresponding to the same sam-

ple (merging across samples that the genetic

data revealed were from the same individual).

For each individual, we restricted to sequences

passing filters (not overlapping known insertion/

deletion polymorphisms, and having aminimum

mapping quality 10), and trimmed two nucleo-

tides from the end of each sequence to reduce

deamination artifacts. We also further restricted

to sequence data with aminimumbase quality of

20. To represent each individual at each SNP po-

sition, we randomly selected a single sequence

(if at least one was available).

For Darra-i-Kur, we analyzed a single-stranded

DNA library (L5082) at the Max Planck Institute

forEvolutionaryAnthropology inLeipzig,Germany,

generated as part of a previous study (78). The
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previous study only analyzedmitochondrial DNA,

and for the current study, we enriched the library

for sequences overlapping the same panel of about

1.2 million nuclear targets using two rounds of

hybridization capture (7, 18, 19). We sequenced

the enriched libraries on two lanes of an Illumina

HiSeq2500 platform in a double index configu-

ration (2x76 cycles) (75), andwe determined alleles

usingFreeIbis (79).Wemergedoverlappingpaired-

end and trimmed using leeHom (80). We used

BWA to align the sequences to the human refer-

ence genome hg19 (GRCh37) (77). We retained

sequences showing a perfect match to the ex-

pected index combination for downstream analyses.

We assessed evidence for ancientDNAauthen-

ticity bymeasuring the rate of damage in the first

nucleotide, flagging individuals as potentially con-

taminated if they had less than a 3% cytosine-to-

thymine substitution rate in the first nucleotide

for a UDG-treated library and less than a 10%

substitution rate for a non-UDG-treated library.

We used contamMix to test for contamination

based on polymorphism inmitochondrial DNA

(81), and ANGSD to test for contamination

based on polymorphism on the X chromosome

in males (82).

Radiocarbon dating

We generated 269 radiocarbon (
14
C) dates on

bone using acceleratormass spectrometry (AMS)

(table S3). Most of these (n = 242) were gener-

ated at the Pennsylvania State University (PSU)

Radiocarbon Laboratory, and here we excerpt a

description of the sample preparation method-

ology at PSU (the methods used at the other

laboratories are publicly available and we refer

readers to the literature for thosemethodologies).

Possible contaminants (conservants and ad-

hesives) were removed by sonicating all bone

samples in successive washes of ACS grade

methanol, acetone, and dichloromethane for

30 min each at room temperature, followed by

three washes in Nanopure water to rinse. Bone

collagen for
14
C was extracted and purified using

a modified Longin method with ultrafiltration

[>30 kDa gelatin; (83)]. If collagen yields were

low and amino acids poorly preserved we used a

modified XAD process [XAD Amino Acids; (84)].

For quality assurance we measured carbon and

nitrogen concentrations and C/N ratios of all

extracted and purified collagen/amino acid sam-

ples with a Costech elemental analyzer (ECS

4010). We evaluated quality based on % crude

gelatin yield, %C, %N and C/N ratios before AMS
14
C dating. C/N ratios for all directly radiocarbon

dated samples fell between 2.9 and 3.4, indicating

excellent preservation (85). Collagen/amino acid

samples (~2.1 mg) were then combusted for

3 hours at 900°C in vacuum-sealed quartz tubes

with CuO andAgwires. Sample CO2was reduced

to graphite at 550°C using H2 and a Fe catalyst,

with reaction water drawn off with Mg(ClO4)2
(86). All

14
C measurements were made on a

modified National Electronics Corporation com-

pact spectrometer with a 0.5 MV accelerator

(NEC 1.5SDH-1). The
14
C ages were corrected

formass-dependent fractionationwithmeasured

d13C values (87) and compared with samples of

Pleistocene whale bone (backgrounds, 48,000

cal BP), late Holocene bison bone (~1850 cal BP),

late 1800s CE cow bone, and OX-2 oxalic acid

standards. All calibrated
14
C ages were calculated

using OxCal version 4.3 (Ramsey and Lee 2013)

using the IntCal13 northern hemisphere curve

(88), and we quote 95% confidence intervals

(2-sigma ranges).

Principal components analysis (PCA)

We carried out PCA using the smartpca package

of EIGENSOFT 7.2.1 (35). We used default pa-

rameters and added two options (lsqproject:YES

and numoutlieriter:0) to project the ancient indi-

viduals onto the PCA space.Weused twobasis sets

for the projection: the first based on 1340 present-

day Eurasians genotyped on the Affymetrix

Human Origins array, and the second based

on a subset of 991 present-day West Eurasians

(7, 27, 32). These projections are shown repeat-

edly in (13) and are used in the Online Data

Visualizer.We also computedFST between groups

using the parameters inbreed:YES and fstonly:

YES. We restricted these analyses to the data-

set obtained by merging our ancient DNA data

with themodernDNAdata on theHumanOrigins

array and restricting to 597,573 SNPs. We treated

positions where we did not have sequence data

as missing genotypes.

ADMIXTURE clustering

Using PLINK2 (89), we first pruned our dataset

using the –geno 0.7 option to ensure that we only

performed our analysis on sites where at least

70% of individuals were covered by at least one

sequence. This resulted in 892,613 SNPs. Indi-

viduals without coverage on specific SNPs were

assigned missing data at those sites. We ran

ADMIXTURE (36) with 10 replicates, reporting

the replicate with the highest likelihood. We

show results for K = 5 in (13), as we found that

this provides good resolution for disambiguat-

ing the sources of pre-Copper Age ancestry in

the ancient individuals.

f-statistics

We used the qp3pop and qpDstat packages in

ADMIXTOOLS to compute f3-statistics and f4-

statistics. We used the inbreed:YES parameter

to compute f3-statistics as a test for admixture

with an ancient population as a target, with all

ancient genomes as sources. Using the f4Mode:

YES parameter in qpDstat, we also computed

two sets of f4-symmetry statistics to evaluate if

pairs of populations are consistent with forming

a clade relative to a comparison population. The

first is a “Two-population comparison” statistic

where we compare all possible pairs of ancient

groups (the Test populations) to a panel of popu-

lations that encompasses diverse pre-Copper Age

andmorewidespread genetic variation. Thus, we

compute a statistic of the form f4(Test 1, Test 2;

Pre-Copper Age, Mbuti). The second is a “Pre-

Copper Age affinity” statistic that compares each

ancient group in turn against diverse pairs of

Pre-Copper Age populations, using statistics of

the form f4(Pre-Copper Age 1, Pre-Copper Age 2;

Test, Mbuti).

Modeling admixture history

We used qpAdm (32) in the ADMIXTOOLS soft-

ware package to estimate the proportions of

ancestry in a Test population deriving from a

mixture of N “reference” populations by leverag-

ing (but not explicitly modeling) shared genetic

drift with a set of “Outgroup” populations. We set

the details:YES parameter, which reports a nor-

mally distributed Z-score for the goodness of fit

of themodel (estimatedwith a Block Jackknife).

Hierarchical modeling

For each group on a proposed cline, we used

qpAdm to obtain estimates for the proportion

of ancestry from hypothesized source popula-

tions, along with the covariance matrix across

groups. We jointly modeled these estimates

using a bivariate normalmodel (forcing the three

proportions to sum to 100%) and estimated the

mean and covariance of the two parameters using

maximum likelihood. With this inferred matrix,

we testedwhether the cline could bemodeled by a

mixture of two primary source populations. First,

we tested if the covariance matrix is consistent

with being singular, implying that knowledge

of the proportion of ancestry from one of the

mixing components was consistent with being

fully predictive of the other two, as expected for

two-way mixture. Second, if we were able to es-

tablish that this was the case, we examined the

difference between the expected and observed

ratios of the ancestry proportions of the analyzed

groups within this generative model by fitting all

the groups simultaneously. This resulted in a

handful of groups deviating from expectation.

Method for dating admixture events

To understand the time scale of populationmixture

events in South Asia, we use ancestry covariance-

based statistics to date the admixtures. To this

end, we use two main methods: ALDER (38) for

dating admixture in present-day individuals, and

DATES (Distribution of Ancestry Tracts of Evo-

lutionary Signals, a new method we introduce

here) for ancient individuals. DATES leverages

ancestry covariance patterns that can be mea-

sured in a single individual (instead of admix-

ture LD that requires multiple individuals). Full

details of the approach and simulations doc-

umenting its efficacy in modern as well as

ancient data are presented in (13). The software

implementingDATES is available at Zenodo (90).
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