The 10th Asia-Oceania Meteorological Satellite Users Conference (Melbourne, Australia, 2-7 December 2019)

Current State and Prospects of Russian Earth Observation Satellite Systems

Prof. Vasily ASMUS

Director of State Research Center for Space Hydrometeorology PLANETA ROSHYDROMET

Melbourne, Australia, 2-7 December 2019

Roshydromet Satellite Observation System Objectives

HYDROMETEOROLOGY AND GEOPHYSICAL MONITORING

- atmosphere/ocean monitoring and forecasting;
- ice cover monitoring for navigation in Arctic and Antarctic regions, freezing seas of Russia;
- space weather information service;
- data collection (via satellites) from Roshydromet' observation sites.

DISASTER MONITORING AND EMERGENCY SITUATION CONTROL

- disaster occurrence assessment;
- monitoring of emergency situations;
- evaluation of the damage caused by disaster event.

GLOBAL CLIMATE CHANGE MONITORING

- studying of climate, ocean and landscape changes based on observations of earth-radiation budget, cloud cover, ozone, snow and ice cover, water temperature and color, vegetation cover, and etc.

ENVIRONMENTAL POLLUTION MONITORING

- environmental pollution monitoring of land, atmosphere, and ocean;
- evaluation of probable pollution spread, including radioactive pollution.

GLOBAL EARTH OBSERVATION SATELLITE SYSTEM

RUSSIAN EARTH OBSERVATION SATELLITE SYSTEM

Russian Earth Observation Satellites Program

(Federal Space Program for 2005-2015 and 2016-2025)

Roshydromet Ground Segment of Earth Observation Satellite System

Satellite Centers:

European

(SRC Planeta, Moscow-Obninsk-Dolgoprudny)

Siberian (SRC Planeta, Novosibirsk)

Far Eastern (SRC Planeta, Khabarovsk)

• - more than **70** local reception sites

State Research Center Planeta (SRC Planeta) daily activities:

- receives more than 1.4 TB satellite data;
- produces more than 530 types of satellite-based products;
- provides data for more than 560 federal and regional users.

Users of the Satellite Data and Products

State Research Center Planeta

SRC Planeta Receiving Stations EUROPEAN CENTER

PRI-PM

KPI 4.8

JBNINSK

SCOW

PS-LRPT

SKS-PRM 8/7

SIBERIAN CENTER

SPDP-E

KPI-4.8 APPI-M

SPOI-2L

DUAL MEOS Polar DUAL MEOS Polar

UniScan

PK-9M

FAR EASTERN CENTER

SPOI-2L

APPI-GD

PRI-PM

NOVOSIBIRSK

APPI-MD SPOI-E

DUAL MEOS Polar

SPOI-2S

UniScan SKS-PRD 8/7 SKS-PRM 8/7

PK-9M

© SRC Planeta

Roshydromet Ground Segment of Earth Observation Satellite System

ROSHYDROMET GROUND SEGMENT

ELECTRO-L Geostationary Meteorological Satellite

ELECTRO-L N2 (76°E) launched on 11 December 2015 ELECTRO-L N3 (165.8°E) — planned for 24 December 2019

Parameter	Value
Three-axis hig	h-precision stabilization
In-orbit mass	~ 1500 kg
Payload mass	~ 370 kg
Lifetime	10 years
Longitude	76°E,14.5°W, 165.8°E
Altitude	830 km
Data dissemination format	HRIT/LRIT
Coverage/Cycle	Full disk every 30/15 min

Mission objectives

- Operational observation of the atmosphere and the Earth surface
- Heliogeophysical measurements
- Maintaining Data Collection System and COSPAS/SARSAT Service

Data collection system (DCS) at Roshydromet' Observation Network

DCS comprises of the network of data collection platforms at Roshydromet' observation sites, relay transponders at Russian geostationary satellites of ELECTRO and LUCH series, and ground reception stations at SRC Planeta centers. The system will be further complemented with the launch of highly elliptical orbit satellites of ARCTICA series.

LUCH-5B (95°E)

ELECTRO-L N2 (76°E)

Data is currently being collected from 671 Roshydromet' observation network (•••), including difficult to access (•) stations (138), and hydrological (•) sites (46).

European center

Siberian center Far Eastern center SRC Planeta

11

METEOR-M Polar-orbiting Meteorological Satellite

METEOR-M N2 (ECT 09:30) launched on 8 July 2014 METEOR-M N2-2 (ECT 15:00) launched on 5 July 2019

Parameter	Value
In-orbit mass	~ 2700 kg
Payload mass	~1200 kg
Lifetime	5 years
Orbit	Sun-synchronous
Altitude	830 km
Data dissemination format	HRPT/LRPT

Mission objectives

- Weather analysis and forecasting on global and regional scales
- Global climate change monitoring
- Sea surface observations
- Space weather analysis and prediction

METEOR-M N2, 2-2 Basic Instruments Specifications

Instrument	Application	Spectral band	Swath width (km)	Resolution (km)
MSU-MR Low-resolution multi-channel scanning radiometer	Global and regional cloud cover mapping, ice and snow cover observation, forest fire monitoring	0.5 – 12.5 μm (6 channels)	2900	1 x 1
KMSS Visible spectrum scanning imager	Earth surface monitoring for various applications (floods, soil and vegetation cover, ice cover)	0.4-0.9 μm (3+3 channels)	450/900	0.05/0.1
MTVZA-GY Imager-sounder (module for temperature and humidity sounding of the atmosphere)	Atmospheric temperature and humidity profiles, SST, sea level wind, etc.	10.6-183.3 GHz (26 channels)	1500	16 – 90
IKFS-2 Advanced IR sounder (IR Fourier-spectrometer)	Atmospheric temperature and humidity profiles	5-15 μm	2000	35
Severjanin-M * X-band synthetic aperture radar	All-weather Ice coverage monitoring	9500-9700 MHz	600	0.5/1
GGAK-M Heliogeophysical measurements suite	Heliogeophysical data			
BRK SSPD Data collection system (DCS)	Data retransmission from DCPs			

* - onboard Meteor-M N2

ARCTICA-M Highly Elliptical Orbit Meteorological Satellite

ARCTICA-M N1 — planned for 2020 ARCTICA-M N2 — planned for 2023

Parameter	Value
Orbit:	
Apogee, km	40000
Perigee, km	1000
Inclination, deg	63.4
Period, h	12
Number of MSU-GS/HE spectral channel	10
Spectral range, µm	from 0.5 to 12.5
Resolution (at nadir):	
- VIS-channel, km	1
- IR-channel, km	4
Field-of-view from the	
Molniya orbit, min:	
- regular mode	30
- frequent mode	15
Spacecraft mass, kg	2000

Highly Elliptical Orbits (HEO) for Arctic Observations

Satellite System Ballistic Configuration

Spacecraft N2

π

Spacecraft N1

 \mathcal{O}

π

Parameter of the spacecraft orbits:

- apogee altitude (α) ~ 40000 km;
- perigee altitude (π)
- ~ 1000 km; ~ 63°:

α

- inclination (i)
- orbital period
- 12 hours

Positional relationship of the spacecraft orbits:

coincidence of ascending node (Ω) of the spacecraft N1 orbit and descending node (σ) of the spacecraft N2 orbit

Location of the orbit operational parts: - beginning of the operational part of each spacecraft is 3.2 hours before the apogee passing;

α

- end of the operational part is 3.2 hours after the apogee passing:
- relative drift of the orbit operational parts of spacecraft N1 and N2 equals 6 hours;
- provides continuous observation of the arctic territories, located at the latitude, higher than 60° N;
- provides continuous radio visibility of the spacecrafts orbit operational parts at the ground stations in Moscow, Novosibirsk, Khabarovsk

KANOPUS-V Disaster Monitoring Satellite

KANOPUS-V N1 launched on 22.07.2012 KANOPUS-V-IK launched on 14.07.2017 KANOPUS-V N3, 4 launched on 01.02.2018 KANOPUS-V N5, 6 launched on 27.12.2018

Parameter	Value
In-orbit mass	465 kg (N1,3-6) & 600 kg (IR)
Payload mass	106 kg (N1,3-6) & 191 kg (IR)
Lifetime	5 years
Orbit	Sun-synchronous
Altitude	510 - 540 km
Orbit inclination	97,4 °

KANOPUS-V Basic Characteristics

	Spectral channels (µm)	Resolution (m)	Swath width (km)
Panchromatic film-making system (PSS)	0.54-0.86	2.1	23
Multispectral film-making system (MSS)	0.46-0.52 0.51-0.60 0.63-0.69 0.75-0.84	10,5	23
Multi-channel medium and IR range radiometer (MSU-IK-SR)*	3.5-4.1 8.4-9.4	200	2000

* - onboard KANOPUS-V-IK

RESURS-P High Resolution Satellite

RESURS-P N1 launched on 25.06.2013

RESURS-P N2 launched on 26.12.2014 (inactive since 19.12.2017)

RESURS-P N3 launched on 13.03.2016 (inactive since 28.02.2017)

RESURS-P N4 planned for 2020

Parameter	Value
In-orbit mass	- 6275kg
Payload mass	- 2258 kg
Lifetime	5 years
Orbit	elliptical, sun-synchronous
Altitude	475 km
Orbit inclination	97,27 °

Resurs-P Basic Characteristics

	High-resolution instrument GEOTON-L1	Multispectral wide swath suit (high/medium resolution)	Hyperspectral imaging equipment GSA
Spectral Bands (µm)			Not less than 96 spectral channels in the range 0.4-1.1 μm
panchromatic mode	0.58-0.8	0.43-0.9/0.43-0.7	
multispectral mode	0.45-0.52; 0.52-0.6; 0.61-0.68; 0.67÷0.7; 0.7-0.73; 0.72-0.80; 0.80- 0.90	0.43-0.51; 0.51-0.58; 0.60-0.70; 0.70-0.90; 0.80-0.90	
Resolution (m)			25-30
panchromatic mode	1	12/60	
multispectral mode	3-4	24/120	
Swath width (km)	38	96/480	25

EARS Russian Segment

Roshydromet Participation in EARS

CAL/VAL System for Satellite Data and Products

Standard measurements

Cal/Val examples

Satellite-based Products

Flooding map

SNOW AND ICE COVER

Snow cover map

Sea ice cover map

Sea ice drift map

ATMOSPHERIC SOUNDING

Temperature profile

Humidity profile

Atmospheric sounding data coverage

Meteorological phenomena monitoring

Precipitation and cloud cover parameters

Atmospheric motion winds

SEA AND LAND SURFACE TEMPERATURE

Ocean surface temperature

Sea surface temperature

Land surface temperature

ENVIRONMENTAL MONITORING

Risk areas for

pollution spread

1 8

Water pollution

Volcanic ash spead

Old ice cover monitoring in Russian Arctic

Seasonal changes in Caspian Sea Ice cover

Desertification monitoring at Black Lands of the Kalmvk Republic

CLOUD COVER

Cloud Cover: Global Monitoring

GOES-W, GOES-E, METEOSAT-11, ELECTRO-L N2, HIMAWARI-8

METEOSAT-8, HIMAWARI-8

Global Cloud Maps

METEOR-M N2

Cloud Top Height Temperature

Cloud Cover Fraction and Cloud Top Height GOES-W, GOES-E, METEOSAT-8, 11, HIMAWARI-8

METEOR-M-M N2

ELECTRO-L N2

Cloud Cover: Regional Monitoring

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ СКРУЖАЮЩЕЙ СРЕДЫ ФГЕУ "МОЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР КОСМИЧЕСКОЙ ГИДРОМЕТЕОРОЛОГИИ "ПЛАНЕТА"

Cloud Cover Animation, Eurasia (ELECTRO-L N2/MSU-GS)

Cloud Cover, Far-Eastern region (METEOR-M N2-2/MSU-MR)

Arctic and Antarctic Mosaics of IR Images (METEOR-M N2/MSU-MR)

Nephanalysis Map NOAA/AVHRR (IR-channel: 10.3 -11.3 μm)

Earth Observations: Australia

© SRC Planeta ELECTRO-L N2

04.10.2019

ELECTRO-L N2

04.02.2019

Mosaics of IR Images combined with High-level Thermo-baric Fields

Монтак и подуческой с такстанновирокт злучност СОЛСКА, МАТО (РАЛ-1) и, ПОЛАЖИВС: сооженитом с проземения влучай террогодинисти на проседение на проседение на проседение на проседение на просед

162 apartment 10.5-12.7 store

torestoin feit orn

ФГЕУ "НАУЧНО ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР КООМИЧЕСКОЙ ГИДРОМЕТЕОРОЛОГИИ "ПЛАНЕТА"

В. Выскисте объекти партии сотоко или неи точки сокумующие отщи ФГВУ "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТ? КОСМИЧЕСКОЙ ПИДРОВЕТЕОРОПОЛИИ

Плобайныний константийбранний, шижениний с константик картий преднаблаческим парти Севернот ток константик и бала и бала и стець сама и с

Mosaics of IR Images combined with Low-level Thermo-baric Fields

В ДЕ ИМИ ИМ ПОЧИЛО (ИЗ ИМ. СОГСТ) МУ ИЗИ ИМИ И ОКОМУСИВ ОТЦИ. РГБУ "НАУЧНО ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТ? КОСМИЧЕСКОЙ ГИДРОМАТЕОРОЛОГИИ

Глебольний монтаж	разбранини;
станеценных с протемной юдит	им терахбарического сынес
Совремя гона и	помости
ийстрание 10.	12 5 мац
Revenue Revenue Revenue Revenue Revenue Sector Revenue	Parameter and a second se

© SRC Planeta

Tropical Cyclone Monitoring

(geostationary satellites)

Tropical Cyclone DORIAN

24.08.2019 - 06.09.2019

02-14.08.2019

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГНДРОМЕТЕОРОЛОГИИ И МОНИТОРНИГУ ОКРУЖАЮЩЕЙ СРЕДЫ "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР КОСМИЧЕСКОЙ ГЛЕРОМЕТСОРОЛОГИИ "И.ТАНЕТА" ДАЛЬНЕВОСТОЧНЫЙ ПЕНТР

Анимированное изображение Jammar HC3 Himawari-8 e 14.08.2019 19.00 GMT no 17.08.2019 00:10 GMT

Tropical Cyclone LEKIMA

еское возмущение (нач. стадия

VOLCANIC ACTIVITY MONITORING

Volcanic Activity Observation: Kamchatka Krai

Resurs-P N1 (Geoton-L1)

Kanopus-V (MSS)

© SRC Planeta

Meteor-M N2 (KMSS)

Satellite imagery of Kamchatka Krai volcanoes (3D-visualization), Landsat-8 (OLI)

Volcanic Activity Observations

Roshydromet provides operational monitoring of volcanic activity in Kamchatka and Kuril Islands. During the period of eruptions, satellite images of volcanic plumes are produces. The following eruption parameters are detected based on the satellite data: effective particle radius, optical depth and ash content, total sulfur dioxide content.

Raikoke volcano eruption (June, 2019)

On June 21, 2019 18:05 UTC, an explosive eruption of Raikoke volcano occurred on the Northern Kuril Islands. The ash plume reached a height of 10-13 km and spread over more than 550 km to the east - northeast of the volcano.

Kanopus-V N 1, 22.06.2019 01:17 UTC

Satellite Imagery

TERRA, 22.06.2019 01:25 UTC

Suomi NPP, 22.06.2019 02:13 UTC

Eruption parameters based on AVHRR/Metop, 21.06.2019 23:55 UTC

Effective radius of ash particles, µm

0 1,0 20 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 Ash content, g./sq.m.

Optical depth at 11 µm

Dynamics of Sulfur Dioxide Level based on Sentinel-5P (ml/sq.m.)

23.06.2019, 02:01 UTC

25.06.2019, 01:21 UTC

25.06.2019, 03:01 UTC

Raikoke Volcano Eruption

Volcanic cloud top height, m

Ash content, g./sq.m.

Effective radius of ash particles, µm

Optical depth at 0,55 µm

METEOROLOGICAL PHENOMENA MONITORING

Meteorological Phenomena Monitoring

to a subsystem of the second

[10] температурилогнуха у земля. С.

[1010] nyumenimor naranne, effi-- starpaneniae nepenoca na 300 effi-

направление встра.

22.08.2019

© SRC Planeta

Cloud Cover Parameters

Cloud top height

Cloud bottom height

EUROPEAN REGION

Meteosat-8/SEVIRI

Cloud types

Maximum water content of cloud layer

content

Hail probability and intensity

Cloud top water phase

Thunderstorm probability and intensity

Maximum precipitation rate

Precipitation type

Cloud top height temperature

FAR EASTERN REGION

Cloud top height pressure

Cloud top height

Cloud top height temperature

Cloud types

Metop, NOAA/AVHRR

Water content and maximum precipitation rate

FAR EASTERN

Cloud top height

Cloud types

Cloud top height temperature

Cloud top height pressure

Cloud phase

Cloud water content

Cloud optical depth

Meteor-M M2/MSU-MR

Cloud parameters detection based on MSU-GS / Electro-L N2

Cloud parameters detection based on MSU-MR / Meteor-M N2

NRT Access to Himawari-8 Data

VIDED

Available products:

- True color images
- IR-channels images
- WV-channels images
- Cloud top height (CTH) and CTH temperature
- Cloud types
- Precipitation intensity
- Fog probability
- NWP data

O CPB HIMAWAR

Available products: NRT Himawari-8

Geopotential field map

Satellite imagery combined with NWP data

Temperature field map

Wind field map

© SRC Planeta

ATMOSPHERIC SOUNDING PRODUCTS

IR Sounder IKFS-2 / METEOR-M N2 Atmospheric Sounding

Error statistics for temperature profile retrievals

EARTH SURFACE TEMPERATURE

Global Sea Surface Temperature

Global Sea surface temperature (5-7.07.2019)

Buoy measurements (6.07.2019, 12:00 UTC)

MSU-MR SST estimates vs buoy measurements

dT = Tsst - Tsud

(6.07.2019, 12:00 UTC)

Regional Sea and Land Surface Temperature

arc tr arc tr

NOAA White Sea

NOAA Baltic Sea

NOAA Black Sea

NOAA Caspian Sea

Land surface temperature: Europe

SNOW AND ICE COVER MONITORING

Snow Cover Monitoring

Snow cover boundary maps

Siberian region (16-day composite product)

Far Eastern region (8-day composite product) Russian territory (daily product)

Snow cover monitoring

Snow Cover Monitoring based on MSU-MR / Meteor-M N2

Daily snow cover mask

Snow cover map (8-day composite product)

© SRC Planeta

Ice Cover Monitoring: Sea of Okhotsk

FASTICE DEVELOPMENT (om)

PACKICE DEVELOPMENT (cm): ice-free - nilas (10) grey ice (10-15) - grey-white ice (15-30)

- thin first-year ice (30-70)

in tenths

- young ice (10-30) errra - thin first-year ice (30-70) VZZZ - medium first-year ice (70-120) 2222 - thick first-year ice (>120) 7772 - old ice (>200)

 - small floes (20-100) - medium floes (100-500) - big floes (500-2000)

GENERAL CHARACTERISTICS

(1-3) - total ice concentration (12) - 10 - total ice concentration in tenths

FORMS OF FLOATING ICE (m): . . . new ice

- Ice cake (2-20)

FLOOD MONITORING

Flood Monitoring 2019: Amur River Basin

August - October 2019

(Resurs-P, Kanopus-V, Meteor-M N2, Landsat-8, TERRA, AQUA, Sentinel-1,2)

© SRC Planeta

Himawari-8 Cloud-Free Composite

Terra, 26.07.2019

Terra, 27.07.2019

Terra, 28.07.2019

Himawari-8, 26.07.2019 – 28.07.2019

Extreme Flooding in Irkutsk Region Tulun city (2019)

The first flood wave

The second flood wave

Satellite Imageries

Flood maps

(Kanopus-V/PSS, MSS, Sentinel-2/MSI)

- flooded area

Territorial Information System: Far Eastern Region

GLOBAL DATABASE OF PRODUCTS FOR THE FAR EASTERN REGION

GIS «Meteo-DV» provides processing, archiving and visualization of various data types: meteorological, hydrological, aerological, NWP output, ecological, geophysical and satellite-based products. The system utilizes the WEB and GIS technologies and is targeted on data provision to the local decision makers on the natural hazardous in the Far Eastern region.

Geoinformation System (GIS)

- satellite data: Meteor-M (MSU-MR), TERRA/AQUA (MODIS), Meteor-M (KMSS), Kanopus-V (MSS), Landsat-8 (OLI), Resurs-P (SHMSA)
- hydrological data: water level, snow cover depth, snow water equivalent, soil moisture, flooded area, snow cover maps, snow cover boundary, water level forecast, flood forecast consultation
- oceanographic data: *ice cover conditions, near-sea surface wind vectors, sea level*
- meteorological data: *in-situ data*, *cloud cover images*, *pressure*, *precipitation*, *cloudiness*
- aerological data: air-sounding data, objective analysis, maximum wind speed, tropopause, temperature profile, geopotential profile, humidity profile, wind speed and direction, temperature forecast, geopotential profile forecast, humidity forecast, wind speed and direction forecast
- geophysical data: observational sites
- environmental data: background radiation, hot spots, forest fires map

Web-interface of GIS System «METEO-DV»

Problem-oriented Information System: Flood Monitoring, Forecasting and Early Warning

«GIS Amur» relies on combination of in-situ data from Roshydromet' observation network, satellite data and hydrological modelling and forecasting data for Amur river basin. The system utilizes the WEB and GIS technologies and is targeted on data provision to the local authorities in order to minimize the damage caused by high water.

© SRC Planeta

Satellite data

FIRE MONITORING

Problem-oriented Information System: Forest Fire Monitoring

Daily forest fires monitoring: Russian Federation

Regional forest fires monitoring

Combination of various satellite data for fires monitoring

Fires area

© SRC Planeta

WATER POLLUTION MONITORING

Problem-oriented Information System: Water Pollution Monitoring

April May June July August September October Oil slicks areas: 0.1 1.5 5.10 10.50 > 50 км² Complex map of oil slick distribution

in terms of spill area (a) and month of detection (b)

Complex map of water environmental conditions

In-situ data

Operational products

Water motion map

VEGETATION COVER MONITORING

CAL HARRY GROUP

Problem-oriented Information System: Agricultural Monitoring

The system provides joint analysis of satellite data and in-situ agrometeorological data for the territory of Russia. It aims on data provision on agrometeorological monitoring and agricultural crop assessment to decision makers and national research institutions.

http://agrometeo.geosmis.ru/

60

Agricultural Crop Condition Monitoring

Cereal crops conditions: Russian administrative districts and farms

Agricultural Land Monitoring

Agricultural land map based on automated unsupervised classification

	stubble after harvesting
	satisfactory crop conditions
	good crop conditions
land	dense vegetation in the floodplain
ana	

CLIMATE CHANGE MONITORING

Sea Ice Cover Dynamics in Arctic Region

The product is based on microwave (active, passive), visible and infrared data from Russian (OKEAN, METEOR series) and foreign (Metop, NOAA, EOS series) satellites.

- sea ice concentration of 0-10%

Global Climate Change Monitoring

OKEAN satellite, 1983 -1999, QuikSCAT/SeaWinds, ENVISAT/ASAR AQUA/AMSR-E, MetOp/ASCAT, Oceansat-2/OSCAT, Meteor-M №2/ BRLK "Severyanin-M", Sentinel/SAR-C, 2002-2018

Dynamics of Antarctic Ice Cover, 2002-2018

Metop/ASCAT, Oceansat-2/OSCAT, Meteor-M/MSU-MR

Dynamics of Old Ice in the Russian Arctic, 2002-2018

Sentinel/SAR-C

Dynamics of Caspian Sea Fast and Drift Ice, 2012-2018

NOAA/AVHRR, TERRA, AQUA/MODIS, Sentinel/SAR-C

The 10th Asia-Oceania Meteorological Satellite Users Conference (Melbourne, Australia, 2-7 December 2019)

Thank you!

Melbourne, Australia, 2-7 December 2019